A fast solver for Fredholm equations of the second kind with weakly singular kernels
نویسندگان
چکیده
In this paper, we consider solutions of Fredholm integral equations of the second kind where the kernel functions are asymptotically smooth or products of such functions with highly oscillatory coefficient functions. We present a scheme based on polynomial interpolation to approximate matrices A from the discretization of these integral operators. Our approximation matrix B is obtained by partitioning the domain on which the kernel function is defined into subdomains of different sizes and approximating the kernel function at each subdomain by interpolation polynomial at the Chebyshev points. Although B is dense, it can still be constructed in O(nk) operations, requires O(nk) storage and the product By can be obtained in O(nk logn) operations, where n is the size of the matrix and k is the degree of the interpolation polynomial used. We prove that the Frobenius norm kA BkF 6 if k is of O(log 1) for smooth kernels (including log jx tj) and of O(log logn+log 1) for weakly singular kernels such as jx tj 1=2. Comparison with the waveletlike method by Alpert et. al. [2] shows that our method requires less memory and is more accurate.
منابع مشابه
COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS
In this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of Fredholm-Volterra integral equations (FVIEs) are smooth.
متن کاملSuperconvergence of the Iterated Galerkin Methods for Hammerstein Equations
In this paper, the well known iterated Galerkin method and iterated Galerkin-Kantorovich regularization method for approximating the solution of Fredholm integral equations of the second kind are generalized to Hammerstein equations with smooth and weakly singular kernels. The order of convergence of the Galerkin method and those of superconvergence of the iterated methods are analyzed. Numeric...
متن کاملConvergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations
In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...
متن کاملThe piecewise polynomial collocation method for nonlinear weakly singular Volterra equations
Second-kind Volterra integral equations with weakly singular kernels typically have solutions which are nonsmooth near the initial point of the interval of integration. Using an adaptation of the analysis originally developed for nonlinear weakly singular Fredholm integral equations, we present a complete discussion of the optimal (global and local) order of convergence of piecewise polynomial ...
متن کاملSolving Volterra Integral Equations of the Second Kind with Convolution Kernel
In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad et al., [K. Maleknejad and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. (2005)] to gain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Num. Math.
دوره 10 شماره
صفحات -
تاریخ انتشار 2002